Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Pediatric Infect Dis Soc ; 12(6): 322-331, 2023 Jun 30.
Article in English | MEDLINE | ID: covidwho-20237253

ABSTRACT

BACKGROUND: To identify a diagnostic blood transcriptomic signature that distinguishes multisystem inflammatory syndrome in children (MIS-C) from Kawasaki disease (KD), bacterial infections, and viral infections. METHODS: Children presenting with MIS-C to participating hospitals in the United Kingdom and the European Union between April 2020 and April 2021 were prospectively recruited. Whole-blood RNA Sequencing was performed, contrasting the transcriptomes of children with MIS-C (n = 38) to those from children with KD (n = 136), definite bacterial (DB; n = 188) and viral infections (DV; n = 138). Genes significantly differentially expressed (SDE) between MIS-C and comparator groups were identified. Feature selection was used to identify genes that optimally distinguish MIS-C from other diseases, which were subsequently translated into RT-qPCR assays and evaluated in an independent validation set comprising MIS-C (n = 37), KD (n = 19), DB (n = 56), DV (n = 43), and COVID-19 (n = 39). RESULTS: In the discovery set, 5696 genes were SDE between MIS-C and combined comparator disease groups. Five genes were identified as potential MIS-C diagnostic biomarkers (HSPBAP1, VPS37C, TGFB1, MX2, and TRBV11-2), achieving an AUC of 96.8% (95% CI: 94.6%-98.9%) in the discovery set, and were translated into RT-qPCR assays. The RT-qPCR 5-gene signature achieved an AUC of 93.2% (95% CI: 88.3%-97.7%) in the independent validation set when distinguishing MIS-C from KD, DB, and DV. CONCLUSIONS: MIS-C can be distinguished from KD, DB, and DV groups using a 5-gene blood RNA expression signature. The small number of genes in the signature and good performance in both discovery and validation sets should enable the development of a diagnostic test for MIS-C.


Subject(s)
COVID-19 , Mucocutaneous Lymph Node Syndrome , Child , Humans , COVID-19/diagnosis , COVID-19/genetics , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/genetics , Hospitals , Mucocutaneous Lymph Node Syndrome/diagnosis , Mucocutaneous Lymph Node Syndrome/genetics , COVID-19 Testing
2.
Sci Rep ; 12(1): 12216, 2022 07 17.
Article in English | MEDLINE | ID: covidwho-1937441

ABSTRACT

Infection with SARS-CoV-2 has highly variable clinical manifestations, ranging from asymptomatic infection through to life-threatening disease. Host whole blood transcriptomics can offer unique insights into the biological processes underpinning infection and disease, as well as severity. We performed whole blood RNA Sequencing of individuals with varying degrees of COVID-19 severity. We used differential expression analysis and pathway enrichment analysis to explore how the blood transcriptome differs between individuals with mild, moderate, and severe COVID-19, performing pairwise comparisons between groups. Increasing COVID-19 severity was characterised by an abundance of inflammatory immune response genes and pathways, including many related to neutrophils and macrophages, in addition to an upregulation of immunoglobulin genes. In this study, for the first time, we show how immunomodulatory treatments commonly administered to COVID-19 patients greatly alter the transcriptome. Our insights into COVID-19 severity reveal the role of immune dysregulation in the progression to severe disease and highlight the need for further research exploring the interplay between SARS-CoV-2 and the inflammatory immune response.


Subject(s)
COVID-19 , Humans , Immunity , RNA , SARS-CoV-2 , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL